Increasing effectiveness of model-based fault diagnosis: A Dynamic Bayesian Network design for decision making

نویسندگان

  • Philippe Weber
  • Didier Theilliol
  • Christophe Aubrun
  • Alexandre Evsukoff
  • Philippe WEBER
چکیده

This papers aims to design a new approach in order to increase the performance of the decision making in model-based fault diagnosis when signature vectors of various faults are identical or closed. The proposed approach consists on taking into account the knowledge issued from the reliability analysis and the model-based fault diagnosis. The decision making, formalised as a bayesian network, is established with a priori knowledge on the dynamic component degradation through Markov chains. The effectiveness and performances of the technique are illustrated on a heating water process corrupted by faults. Copyright © 2006 IFAC

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Fault Detection on Boiler-turbine Unit Actuators Using Dynamic Neural Networks

Due to the important role of the boiler-turbine units in industries and electricity generation, it is important to diagnose different types of faults in different parts of boiler-turbine system. Different parts of a boiler-turbine system like the sensor or actuator or plant can be affected by various types of faults. In this paper, the effects of the occurrence of faults on the actuators are in...

متن کامل

Research on Safety Risk of Dangerous Chemicals Road Transportation Based on Dynamic Fault Tree and Bayesian Network Hybrid Method (TECHNICAL NOTE)

Safety risk study on road transportation of hazardous chemicals is a reliable basis for the government to formulate transportation planning and preparing emergent schemes, but also is an important reference for safety risk managers to carry out dangerous chemicals safety risk managers. Based on the analysis of the transport safety risk of dangerous chemicals at home and abroad, this paper studi...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

Dynamic Safety Analysis CNG Stations Using Fault Tree Approach and Bayesian Network

Introduction: The safety of CNG stations is important because of their location in urban areas, as well as to prevent accidents and to protect the safety of personnel, property, and environment. An event occurrence analysis with probability updating is the key to dynamic safety analysis. Methods and materials: In this study, the Failure Modes and Effects Analysis (FMEA) technique was used to d...

متن کامل

A DSS-Based Dynamic Programming for Finding Optimal Markets Using Neural Networks and Pricing

One of the substantial challenges in marketing efforts is determining optimal markets, specifically in market segmentation. The problem is more controversial in electronic commerce and electronic marketing. Consumer behaviour is influenced by different factors and thus varies in different time periods. These dynamic impacts lead to the uncertain behaviour of consumers and therefore harden the t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017